Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Critical Care Medicine ; (12): 598-603, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982639

RESUMO

OBJECTIVE@#To investigate the role and mechanism of silent information regulator 1 (SIRT1) in regulating nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in oxidative stress and inflammatory response to sepsis-induced liver injury.@*METHODS@#A total of 24 male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, cecal ligation and puncture (CLP) group, SIRT1 agonist SRT1720 pretreatment (CLP+SRT1720) group and SIRT1 inhibitor EX527 pretreatment (CLP+EX527) group, with 6 rats in each group. Two hours before operation, SRT1720 (10 mg/kg) or EX527 (10 mg/kg) were intraperitoneally injected into the CLP+SRT1720 group and CLP+EX527 group, respectively. Blood was collected from the abdominal aorta at 24 hours after modeling and the rats were sacrificed for liver tissue. The serum levels of interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by microplate method. Hematoxylin-eosin (HE) staining was used to observe the pathological injury of rats in each group. The levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH) and superoxide dismutase (SOD) in liver tissue were detected by corresponding kits. The mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.@*RESULTS@#Compared with the Sham group, the serum levels of IL-6, IL-1β, TNF-α, ALT and AST in the CLP group were significantly increased; histopathological results showed that liver cords were disordered, hepatocytes were swollen and necrotic, and a large number of inflammatory cells infiltrated; the contents of MDA and 8-OHdG in liver tissue increased, while the contents of GSH and SOD decreased; and the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were significantly decreased. These results suggest that sepsis rats have liver dysfunction, and the levels of SIRT1, Nrf2, HO-1 and antioxidant protein in liver tissues were decreased, while the levels of oxidative stress and inflammation were increased. Compared with the CLP group, the levels of inflammatory factors and oxidative stress were significantly decreased in the CLP+SRT1720 group, the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were significantly increased [IL-6 (ng/L): 34.59±4.21 vs. 61.84±3.78, IL-1β (ng/L): 41.37±2.70 vs. 72.06±3.14, TNF-α (ng/L): 76.43±5.23 vs. 130.85±5.30, ALT (U/L): 30.71±3.63 vs. 64.23±4.59, AST (U/L): 94.57±6.08 vs. 145.15±6.86, MDA (μmol/g): 6.11±0.28 vs. 9.23±0.29, 8-OHdG (ng/L): 117.43±10.38 vs. 242.37±11.71, GSH (μmol/g): 11.93±0.88 vs. 7.66±0.47, SOD (kU/g): 121.58±5.05 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 1.20±0.13 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 1.21±0.12 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 1.71±0.06 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.89±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.87±0.08 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.93±0.14 vs. 0.54±0.12, all P < 0.05], these results indicated that SIRT1 agonist SRT1720 pretreatment could improve liver injury in sepsis rats. However, pretreatment with SIRT1 inhibitor EX527 showed the opposite effect [IL-6 (ng/L): 81.05±6.47 vs. 61.84±3.78, IL-1β (ng/L): 93.89±5.83 vs. 72.06±3.14, TNF-α (ng/L): 177.67±5.12 vs. 130.85±5.30, ALT (U/L): 89.33±9.52 vs. 64.23±4.59, AST (U/L): 179.59±6.44 vs. 145.15±6.86, MDA (μmol/g): 11.39±0.51 vs. 9.23±0.29, 8-OHdG (ng/L): 328.83±11.26 vs. 242.37±11.71, GSH (μmol/g): 5.07±0.34 vs. 7.66±0.47, SOD (kU/g): 59.37±4.28 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 0.34±0.03 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 0.46±0.04 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 0.21±0.03 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.47±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.32±0.07 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.19±0.09 vs. 0.54±0.12, all P < 0.05].@*CONCLUSIONS@#SIRT1 can inhibit the release of proinflammatory factors and alleviate the oxidative damage of hepatocytes by activating Nrf2/HO-1 signaling pathway, thus playing a protective role against CLP-induced liver injury.


Assuntos
Animais , Masculino , Ratos , Actinas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas , Heme Oxigenase-1/metabolismo , Interleucina-6 , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro , Sepse/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
China Journal of Chinese Materia Medica ; (24): 1770-1778, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981394

RESUMO

To investigate the effect of Huazhi Rougan Granules(HZRG) on autophagy in a steatotic hepatocyte model of free fatty acid(FFA)-induced nonalcoholic fatty liver disease(NAFLD) and explore the possible mechanism. FFA solution prepared by mixing palmitic acid(PA) and oleic acid(OA) at the ratio of 1∶2 was used to induce hepatic steatosis in L02 cells after 24 h treatment, and an in vitro NAFLD cell model was established. After termination of incubation, cell counting kit-8(CCK-8) assay was performed to detect the cell viability; Oil red O staining was employed to detect the intracellular lipid accumulation; enzyme-linked immunosorbnent assay(ELISA) was performed to measure the level of triglyceride(TG); to monitor autophagy in L02 cells, transmission electron microscopy(TEM) was used to observe the autophagosomes; LysoBrite Red was used to detect the pH change in lysosome; transfection with mRFP-GFP-LC3 adenovirus was conducted to observe the autophagic flux; Western blot was performed to determine the expression of autophagy marker LC3B-Ⅰ/LC3B-Ⅱ, autophagy substrate p62 and silent information regulator 1(SIRT1)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway. NAFLD cell model was successfully induced by FFA at 0.2 mmol·L~(-1) PA and 0.4 mmol·L~(-1) OA. HZRG reduced the TG level(P<0.05, P<0.01) and the lipid accumulation of FFA-induced L02 cells, while elevated the number of autophagosomes and autophagolysosomes to generate autophagic flux. It also affected the functions of lysosomes by regulating their pH. Additionally, HZRG up-regulated the expression of LC3B-Ⅱ/LC3B-Ⅰ, SIRT1, p-AMPK and phospho-protein kinase A(p-PKA)(P<0.05, P<0.01), while down-regulated the expression of p62(P<0.01). Furthermore, 3-methyladenine(3-MA) or chloroquine(CQ) treatment obviously inhibited the above effects of HZRG. HZRG prevented FFA-induced steatosis in L02 cells, and its mechanism might be related to promoting autophagy and regulating SIRT1/AMPK signaling pathway.


Assuntos
Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Autofagia , Fígado
3.
Journal of Central South University(Medical Sciences) ; (12): 18-25, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929001

RESUMO

OBJECTIVES@#Perfluorooctanoic acid (PFOA) can cause lipid metabolism disorders in animal body and affect the lipolysis and synthesis of fatty acids. Peroxisome proliferators-activated receptor (PPAR) plays an extremely important role in this process. This study aims to explore the effects of PFOA on liver lipid metabolism disorders in Sprague Dewley (SD) rats and the expression of PPAR.@*METHODS@#A total of 40 male SD rats were randomly divided into 4 groups (n=10 in each group): a control group (ddH2O), a low-dose PFOA group [PFOA 1.25 mg/(kg·d)], a middle-dose PFOA group [PFOA 5.00 mg/(kg·d)], and a high-dose PFOA group [PFOA 20.00 mg/(kg·d)]. The rats were fed with normal diet, and PFOA exposure were performed by oral gavage for 14 days, and the rats were observed, weighted and recorded every day during the exposure. After the exposure, the blood was collected, and the livers were quickly stripped after the rats were killed. Part of the liver tissues were fixed in 4% paraformaldehyde for periodic acid-schiff (PAS) staining; the contents of HDLC, LDLC, TG, TC in serum and liver tissues, as well as the activities of their related enzymes were assayed; The expression levels of cyclic adenosine monophosphate-response element binding protein (Cbp), general control of amino acid synthesis 5-like 2 (Gcn5L2), peroxidation peroxisome proliferation factor activated receptor γ (PPAR), silent information regulator 1 (Sirt1) and human retinoid X receptor alpha 2 (Rxrα2) ) were detected by Western blotting.@*RESULTS@#After 14 days of PFOA exposure, the PAS staining positive particles in the cytoplasm and nucleus of SD rats in the medium and high dose groups were significantly reduced compared with the control group. The serum levels of LDLC and TC in the low-dose and middle-dose groups were significantly reduced compared with the control group (all P<0.05), while the high-dose group showed an increasing tendency, without siginificant difference (P>0.05), there was no significant difference in HDLC and TG (both P>0.05). The activities of alkaline phosphatase (AKP) and alanine aminotransferase (ALT) were increased significantly (both P<0.05) compared with control group; the ratio of ALT/aspartate aminotransferase (AST) in the high-dose group was increased significantly (P<0.05), there was no significant difference in LDH and TG (both P>0.05); the HDLC content in the liver tissues in the high-dose group was significantly reduced, compared with the control group (P<0.05); the TC contents in the liver tissues in the low, medium and high-dose groups were significantly increased (all P<0.05), there was no significant difference in LDLC and TG (both P>0.05); the AKP activity in the livers in the medium and high-dose groups was significantly increased (both P<0.05), there was no siginificant difference in LDH, ALT, and the ratio of ALT/AST (all P>0.05); the protein expression levels of Ppar γ, Cbp and Rxrα2 in the liver in the high dose groups were significantly down-regulated compared with the control group (all P<0.05), while the protein expression levels of Sirt1 were significantly up-regulated (all P<0.05).@*CONCLUSIONS@#PFOA exposure can cause lipid metabolism disorder and glycogen reduction in SD rat livers, which may be related to the activation of Sirt1 and inhibition of Ppar γ expression, leading to affecting the normal metabolism of fatty acids and promoting glycolysis.


Assuntos
Animais , Masculino , Ratos , Caprilatos , Ácidos Graxos/farmacologia , Fluorocarbonos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado/metabolismo , PPAR gama , Ratos Sprague-Dawley , Sirtuína 1/metabolismo
4.
Journal of Southern Medical University ; (12): 463-472, 2022.
Artigo em Chinês | WPRIM | ID: wpr-936338

RESUMO

OBJECTIVE@#To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism.@*METHODS@#HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy.@*RESULTS@#High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001).@*CONCLUSION@#Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.


Assuntos
Animais , Ratos , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais , Flavanonas , Glucose/farmacologia , Glucosídeos , Inflamação/metabolismo , Interleucina-6/metabolismo , Neovascularização Patológica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Estreptozocina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Journal of Southern Medical University ; (12): 93-100, 2022.
Artigo em Chinês | WPRIM | ID: wpr-936289

RESUMO

OBJECTIVE@#To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.@*METHODS@#SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.@*RESULTS@#The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).@*CONCLUSION@#PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.


Assuntos
Animais , Ratos , Lesões Encefálicas Traumáticas , Glucosídeos/farmacologia , Proteína HMGB1/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Superóxido Dismutase/metabolismo
6.
Biol. Res ; 55: 14-14, 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1383916

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a specific microvascular complication arising from diabetes, and its pathogenesis is not completely understood. tRNA-derived stress-induced RNAs (tiRNAs), a new type of small noncoding RNA generated by specific cleavage of tRNAs, has become a promising target for several diseases. However, the regulatory function of tiRNAs in DR and its detailed mechanism remain unknown. RESULTS: Here, we analyzed the tiRNA profiles of normal and DR retinal tissues. The expression level of tiRNA-Val was significantly upregulated in DR retinal tissues. Consistently, tiRNA-Val was upregulated in human retinal microvascular endothelial cells (HRMECs) under high glucose conditions. The overexpression of tiRNA-Val enhanced cell proliferation and inhibited cell apoptosis in HRMECs, but the knockdown of tiRNA-Val decreased cell proliferation and promoted cell apoptosis. Mechanistically, tiRNA-Val, derived from mature tRNA-Val with Ang cleavage, decreased Sirt1 expression level by interacting with sirt1 3'UTR, leading to the accumulation of Hif-1α, a key target for DR. In addition, subretinal injection of adeno-associated virus to knock down tiRNA-Val in DR mice ameliorated the symptoms of DR. CONCLUSION: tiRNA-Val enhance cell proliferation and inhibited cell apoptosis via Sirt1/Hif-1α pathway in HRMECs of DR retinal tissues.


Assuntos
Animais , Camundongos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retina/metabolismo , Retina/patologia , Células Endoteliais , Sirtuína 1/metabolismo , Neovascularização Patológica/genética
7.
Acta Physiologica Sinica ; (6): 828-834, 2021.
Artigo em Chinês | WPRIM | ID: wpr-921286

RESUMO

As a kind of mental illness, depression produces great difficulties in clinical diagnosis and treatment, and has a high disability rate. It is urgent to clarify the mechanism of depression to find potential therapeutic targets and effective clinical treatment methods. As a deacetylase, silent mating type information regulator 2 homolog 1 (SIRT1) is involved in many biological processes such as cell aging, cancer, and cardiovascular disease. In recent years, more and more studies have found that SIRT1 gene plays an important role in the pathogenesis of depression, but the mechanism is still unclear. Therefore, this review mainly summarizes the relevant research progress on the role and mechanism of SIRT1 gene in the hippocampus, prefrontal cortex, amygdala, hypothalamic suprachiasmatic nucleus, and nucleus accumbens in depression, in order to provide new ideas for exploring the mechanism and prevention of depression.


Assuntos
Humanos , Senescência Celular , Depressão/genética , Hipocampo/metabolismo , Núcleo Accumbens , Sirtuína 1/metabolismo
8.
Braz. j. med. biol. res ; 53(2): e8616, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1055497

RESUMO

Previous research has shown that suppression of miR-383 can prevent inflammation of the endothelium, as well as postpone the development of atherosclerosis. However, the role of miR-383 in endothelial cell apoptosis in diabetes remains unclear. The aim of this study was to investigate the function of miR-383 in high glucose-induced apoptosis and oxidative stress in endothelial cells. A series of experiments involving qualitative polymerase chain reaction, cell transfection, luciferase assay, assessment of cell death, detection of catalase and superoxide dismutase concentrations, detection of intracellular reactive oxygen species (ROS), and western blot analysis were performed in this study. We found that miR-383 expression was promoted, while NAD+-dependent deacetylase and sirtuin 1 (SIRT1) expressions were suppressed in the endothelium of the aorta in db/db mice as well as in human umbilical vein endothelial cells, which were treated with high glucose (HG). Increased expression of miR-383 decreased expression of SIRT1, while suppression of miR-383 promoted expression of SIRT1 in human umbilical vein endothelial cells (HUVECs). Furthermore, suppression of miR-383 following transfection with miR-383 suppressor repressed cell death and generation of ROS in HUVECs. SIRT1 knockdown by siRNA-SIRT1 reversed the suppressive effect of miR-383 inhibition on ROS production and cell apoptosis induced by HG treatment. Overall, the findings of our research suggested that suppression of miR-383 repressed oxidative stress and reinforced the activity of endothelial cells by upregulation of SIRT1 in db/db mice, and targeting miR-383 might be promising for effective treatment of diabetes.


Assuntos
Animais , Masculino , Coelhos , Endotélio Vascular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Sirtuína 1/metabolismo , Glucose/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Transdução de Sinais , Células Cultivadas , Camundongos Endogâmicos C57BL
9.
Braz. j. med. biol. res ; 51(5): e7319, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889079

RESUMO

MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII). The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.


Assuntos
Animais , Masculino , Ratos , Traumatismo por Reperfusão/metabolismo , Isquemia do Cordão Espinal/metabolismo , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Transfecção , Traumatismo por Reperfusão/fisiopatologia , Regulação para Baixo/fisiologia , Regulação para Cima/fisiologia , Western Blotting , Ratos Sprague-Dawley , Apoptose , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Isquemia do Cordão Espinal/fisiopatologia , Modelos Animais de Doenças , Citometria de Fluxo
10.
Biol. Res ; 50: 27, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-950878

RESUMO

BACKGROUND: miR-22 has been shown to be frequently downregulated and act as a tumor suppressor in multiple cancers including breast cancers. However, the role of miR-22 in regulating the radioresistance of breast cancer cells, as well as its underlying mechanism is still not well understood. METHODS: The expressions of miR-22 and sirt1 at mRNA and protein levels were examined by qRT-PCR and Western Blot. The effects of miR-22 overexpression and sirt1 knockdown on cell viability, apoptosis, radiosensitivity, γ-H2AX foci formation were evaluated by CCK-8 assay, flow cytometry, colony formation assay, and γ-H2AX foci formation assay, respectively. Luciferase reporter assay and qRT-PCR analysis were performed to confirm the interaction between miR-22 and sirt1. RESULTS: miR-22 was downregulated and sirt1 was upregulated at both mRNA and protein levels in breast cancer cells. miR-22 overexpression or sirt1 knockdown significantly suppressed viability, induced apoptosis, reduced survival fraction, and increased the number of γ-H2AX foci in breast cancer cells. Sirt1 was identified as a target of miR-22 and miR-22 negatively regulated sirt1 expression. Ectopic expression of sirt1 dramatically reversed the inhibitory effect of miR-22 on cell viability and promotive effect on apoptotic rates and radiosensitivity in breast cancer cells. CONCLUSIONS: miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting sirt1, providing a promising therapeutic target for breast cancer.


Assuntos
Humanos , Feminino , Tolerância a Radiação , Neoplasias da Mama/radioterapia , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Dosagem Radioterapêutica , Neoplasias da Mama/metabolismo , Histonas/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Sobrevivência Celular , Apoptose/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Sirtuína 1/genética
11.
Rev. méd. Chile ; 143(2): 237-243, feb. 2015. ilus
Artigo em Espanhol | LILACS | ID: lil-742575

RESUMO

Currently, there is no discussion on the need to improve and strengthen the institutional health care modality of FONASA (MAI), the health care system used by the public services net and by most of the population, despite the widely known and long lasting problems such as waiting lists, hospital debt with suppliers, lack of specialists and increasing services purchase transference to the private sector, etc. In a dichotomous sectorial context, such as the one of health’s social security in Chile (the state on one side and the market on the other), points of view are polarized and stances tend to seek refuge within themselves. As a consequence, to protect the public solution is commonly associated with protecting the “status quo”, creating an environment that is reluctant to change. The author proposes a solution based on three basic core ideas, which, if proven effective, can strengthen each other if combined properly. These are: network financing management, governance of health care services in MAI and investments and human resources in networked self-managed institutions. The proposal of these core ideas was done introducing a reality testing that minimizes the politic complexity of their implementation.


Assuntos
Animais , Humanos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/uso terapêutico , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/uso terapêutico , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inseticidas/toxicidade , Microscopia Imunoeletrônica/métodos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/farmacologia , Rotenona/toxicidade , Fatores de Tempo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA